This page provides you with instructions on how to extract data from Salesforce and analyze it in Tableau. (If the mechanics of extracting data from Salesforce seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)
What is Salesforce?
Salesforce, a cloud-based software-as-a-service platform, is the most popular CRM application in use today. Salesforce is amazingly customizable, has tons of integration functionality, and includes almost too many bells and whistles to count. Companies can use it to do everything from managing account planning to time management and team collaboration.
What is Tableau?
Tableau is one of the world's most popular analysis platforms. The software helps companies model, explore, and visualize their data. It also offers cloud capabilities that allow analyses to be shared via the web or company intranets, and its offerings are available as both installed software and as a SaaS platform. Tableau is widely known for its robust and flexible visualization capabilities, which include dozens of specialized chart types.
In addition to its business software, Tableau also offers a free product called Tableau Public for analyzing open data sets. If you're new to Tableau, this offering is a great way to experience Tableau's capabilities at no cost and share your work publicly.
Getting data out of Salesforce
Step one is to get all of that data out of Salesforce. Salesforce provides many APIs for its products that can deliver data on accounts, leads, tasks, and more. You can find a list of APIs on one of the company's helpdesk posts with some direction on when and how to use each API. By looking through that post, you can get an idea of which API makes the most sense for your use case.
For our purposes, we'll use the REST API with SOQL (Salesforce Object Query Language), but the same data is available using other protocols, including streaming for real-time receipt of data.
Sample Salesforce data
The Salesforce Rest API can return JSON- or XML-formatted data depending on your preference. Here's what a sample response might look like in JSON format:>
{ "done" : true, "totalSize" : 14, "records" : [ { "attributes" : { "type" : "Account", "url" : "/services/data/v20.0/sobjects/Account/001D000000IRFmaIAH" }, "Name" : "Test 1" }, { "attributes" : { "type" : "Account", "url" : "/services/data/v20.0/sobjects/Account/001D000000IomazIAB" }, "Name" : "Test 2" }, ... ] }
Loading data into Tableau
Analyzing data in Tableau requires putting it into a format that Tableau can read. Depending on the data source, you may have options for achieving this goal, but the best practice among most businesses is to build a data warehouse that contains the data, and then connect that data warehouse to Tableau.
Tableau provides an easy-to-use Connect menu that allows you to connect data from flat files, direct data sources, and data warehouses. In most cases, connecting these sources is simply a matter of creating and providing credentials to the relevant services.
Once the data is connected, Tableau offers an option for locally caching your data to speed up queries. This can make a big difference when working with slower database platforms or flat files, but is typically not necessary when using a scalable data warehouse platform. Tableau's flexibility and speed in these areas are among its major differentiators in the industry.
Analyzing data in Tableau
Tableau's report-building interface may seem intimidating at first, but it's one of the most powerful and intuitive analytics UIs on the market. Once you understand its workflow, it offers fast and nearly limitless options for building reports and dashboards.
If you're familiar with Pivot Tables in Excel, the Tableau report building experience may feel somewhat familiar. The process involves selecting the rows and columns desired in the resulting data set, along with the aggregate functions used to populate the data cells. Users can also specify filters to be applied to the data and choose a visualization type to use for the report.
You can learn how to build a report from scratch for free (although a sign-in is required) from the Tableau documentation.
Keeping Salesforce data up to date
At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.
Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Salesforce.
And remember, as with any code, once you write it, you have to maintain it. If Salesforce modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.
From Salesforce to your data warehouse: An easier solution
As mentioned earlier, the best practice for analyzing Salesforce data in Tableau is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Salesforce to Redshift, Salesforce to BigQuery, Salesforce to Azure Synapse Analytics, Salesforce to PostgreSQL, Salesforce to Panoply, and Salesforce to Snowflake.
Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate Salesforce with Tableau. With just a few clicks, Stitch starts extracting your Salesforce data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Tableau.